0 利用微信群接受吉林快三投注-APP安装下载

利用微信群接受吉林快三投注 注册最新版下载

利用微信群接受吉林快三投注 注册

利用微信群接受吉林快三投注注册

类型【址:a g 9 559⒐ v i p】1:齐白石 大小:PwDH5WBy83455KB 下载:MDVHXcLk13787次
版本:v57705 系统:Android3.8.x以上 好评:oEMzZi3519777条
日期:2020-08-09 03:13:22
安卓
黄万鹏

1.【址:a g 9 559⒐ v i p】1  --------------------------------------------------------------------------------
2.  Believing that it is always best to study some special group, I have, after deliberation, taken up domestic pigeons. I have kept every breed which I could purchase or obtain, and have been most kindly favoured with skins from several quarters of the world, more especially by the Hon. W. Elliot from India, and by the Hon. C. Murray from Persia. Many treatises in different languages have been published on pigeons, and some of them are very important, as being of considerably antiquity. I have associated with several eminent fanciers, and have been permitted to join two of the London Pigeon Clubs. The diversity of the breeds is something astonishing. Compare the English carrier and the short-faced tumbler, and see the wonderful difference in their beaks, entailing corresponding differences in their skulls. The carrier, more especially the male bird, is also remarkable from the wonderful development of the carunculated skin about the head, and this is accompanied by greatly elongated eyelids, very large external orifices to the nostrils, and a wide gape of mouth. The short-faced tumbler has a beak in outline almost like that of a finch; and the common tumbler has the singular and strictly inherited habit of flying at a great height in a compact flock, and tumbling in the air head over heels. The runt is a bird of great size, with long, massive beak and large feet; some of the sub-breeds of runts have very long necks, others very long wings and tails, others singularly short tails. The barb is allied to the carrier, but, instead of a very long beak, has a very short and very broad one. The pouter has a much elongated body, wings, and legs; and its enormously developed crop, which it glories in inflating, may well excite astonishment and even laughter. The turbit has a very short and conical beak, with a line of reversed feathers down the breast; and it has the habit of continually expanding slightly the upper part of the oesophagus. The Jacobin has the feathers so much reversed along the back of the neck that they form a hood, and it has, proportionally to its size, much elongated wing and tail feathers. The trumpeter and laugher, as their names express, utter a very different coo from the other breeds. The fantail has thirty or even forty tail-feathers, instead of twelve or fourteen, the normal number in all members of the great pigeon family; and these feathers are kept expanded, and are carried so erect that in good birds the head and tail touch; the oil-gland is quite aborted. Several other less distinct breeds might have been specified.In the skeletons of the several breeds, the development of the bones of the face in length and breadth and curvature differs enormously. The shape, as well as the breadth and length of the ramus of the lower jaw, varies in a highly remarkable manner. The number of the caudal and sacral vertebrae vary; as does the number of the ribs, together with their relative breadth and the presence of processes. The size and shape of the apertures in the sternum are highly variable; so is the degree of divergence and relative size of the two arms of the furcula. The proportional width of the gape of mouth, the proportional length of the eyelids, of the orifice of the nostrils, of the tongue (not always in strict correlation with the length of beak), the size of the crop and of the upper part of the oesophagus; the development and abortion of the oil-gland; the number of the primary wing and caudal feathers; the relative length of wing and tail to each other and to the body; the relative length of leg and of the feet; the number of scutellae on the toes, the development of skin between the toes, are all points of structure which are variable. The period at which the perfect plumage is acquired varies, as does the state of the down with which the nestling birds are clothed when hatched. The shape and size of the eggs vary. The manner of flight differs remarkably; as does in some breeds the voice and disposition. Lastly, in certain breeds, the males and females have come to differ to a slight degree from each other.Altogether at least a score of pigeons might be chosen, which if shown to an ornithologist, and he were told that they were wild birds, would certainly, I think, be ranked by him as well-defined species. Moreover, I do not believe that any ornithologist would place the English carrier, the short-faced tumbler, the runt, the barb, pouter, and fantail in the same genus; more especially as in each of these breeds several truly-inherited sub-breeds, or species as he might have called them, could be shown him.
3.  --------------------------------------------------------------------------------
4.  I HAVE hitherto sometimes spoken as if the variations so common and multiform in organic beings under domestication, and in a lesser degree in those in a state of nature had been due to chance. This, of course, is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of each particular variation. Some authors believe it to be as much the function of the reproductive system to produce individual differences, or very slight deviations of structure, as to make the child like its parents. But the much greater variability, as well as the greater frequency of monstrosities, under domestication or cultivation, than under nature, leads me to believe that deviations of structure are in some way due to the nature of the conditions of life, to which the parents and their more remote ancestors have been exposed during several generations. I have remarked in the first chapter but a long catalogue of facts which cannot be here given would be necessary to show the truth of the remark that the reproductive system is eminently susceptible to changes in the conditions of life; and to this system being functionally disturbed in the parents, I chiefly attribute the varying or plastic condition of the offspring. The male and female sexual elements seem to be affected before that union takes place which is to form a new being. In the case of 'sporting' plants, the bud, which in its earliest condition does not apparently differ essentially from an ovule, is alone affected. But why, because the reproductive system is disturbed, this or that part should vary more or less, we are profoundly ignorant. Nevertheless, we can here and there dimly catch a faint ray of light, and we may feel sure that there must be some cause for each deviation of structure, however slight.How much direct effect difference of climate, food, &c., produces on any being is extremely doubtful. My impression is, that the effect is extremely small in the case of animals, but perhaps rather more in that of plants. We may, at least, safely conclude that such influences cannot have produced the many striking and complex co-adaptations of structure between one organic being and another, which we see everywhere throughout nature. Some little influence may be attributed to climate, food, &c.: thus, E. Forbes speaks confidently that shells at their southern limit, and when living in shallow water, are more brightly coloured than those of the same species further north or from greater depths. Gould believes that birds of the same species are more brightly coloured under a clear atmosphere, than when living on islands or near the coast. So with insects, Wollaston is convinced that residence near the sea affects their colours. Moquin-Tandon gives a list of plants which when growing near the sea-shore have their leaves in some degree fleshy, though not elsewhere fleshy. Several other such cases could be given.The fact of varieties of one species, when they range into the zone of habitation of other species, often acquiring in a very slight degree some of the characters of such species, accords with our view that species of all kinds are only well-marked and permanent varieties. Thus the species of shells which are confined to tropical and shallow seas are generally brighter-coloured than those confined to cold and deeper seas. The birds which are confined to continents are, according to Mr Gould, brighter-coloured than those of islands. The insect-species confined to sea-coasts, as every collector knows, are often brassy or lurid. Plants which live exclusively on the sea-side are very apt to have fleshy leaves. He who believes in the creation of each species, will have to say that this shell, for instance, was created with bright colours for a warm sea; but that this other shell became bright-coloured by variation when it ranged into warmer or shallower waters.
5.  When a young naturalist commences the study of a group of organisms quite unknown to him, he is at first much perplexed to determine what differences to consider as specific, and what as varieties; for he knows nothing of the amount and kind of variation to which the group is subject; and this shows, at least, how very generally there is some variation. But if he confine his attention to one class within one country, he will soon make up his mind how to rank most of the doubtful forms. His general tendency will be to make many species, for he will become impressed, just like the pigeon or poultry-fancier before alluded to, with the amount of difference in the forms which he is continually studying; and he has little general knowledge of analogical variation in other groups and in other countries, by which to correct his first impressions. As he extends the range of his observations, he will meet with more cases of difficulty; for he will encounter a greater number of closely-allied forms. But if his observations be widely extended, he will in the end generally be enabled to make up his own mind which to call varieties and which species; but he will succeed in this at the expense of admitting much variation, and the truth of this admission will often be disputed by other naturalists. When, moreover, he comes to study allied forms brought from countries not now continuous, in which case he can hardly hope to find the intermediate links between his doubtful forms, he will have to trust almost entirely to analogy, and his difficulties will rise to a climax.Certainly no clear line of demarcation has as yet been drawn between species and sub-species that is, the forms which in the opinion of some naturalists come very near to, but do not quite arrive at the rank of species; or, again, between sub-species and well-marked varieties, or between lesser varieties and individual differences. These differences blend into each other in an insensible series; and a series impresses the mind with the idea of an actual passage.
6.  In favour of this view, I may add, firstly, that C. livia, or the rock-pigeon, has been found capable of domestication in Europe and in India; and that it agrees in habits and in a great number of points of structure with all the domestic breeds. Secondly, although an English carrier or short-faced tumbler differs immensely in certain characters from the rock-pigeon, yet by comparing the several sub-breeds of these breeds, more especially those brought from distant countries, we can make an almost perfect series between the extremes of structure. Thirdly, those characters which are mainly distinctive of each breed, for instance the wattle and length of beak of the carrier, the shortness of that of the tumbler, and the number of tail-feathers in the fantail, are in each breed eminently variable; and the explanation of this fact will be obvious when we come to treat of selection. Fourthly, pigeons have been watched, and tended with the utmost care, and loved by many people. They have been domesticated for thousands of years in several quarters of the world; the earliest known record of pigeons is in the fifth Aegyptian dynasty, about 3000 B.C., as was pointed out to me by Professor Lepsius; but Mr Birch informs me that pigeons are given in a bill of fare in the previous dynasty. In the time of the Romans, as we hear from Pliny, immense prices were given for pigeons; 'nay, they are come to this pass, that they can reckon up their pedigree and race.' Pigeons were much valued by Akber Khan in India, about the year 1600; never less than 20,000 pigeons were taken with the court. 'The monarchs of Iran and Turan sent him some very rare birds;' and, continues the courtly historian, 'His Majesty by crossing the breeds, which method was never practised before, has improved them astonishingly.' About this same period the Dutch were as eager about pigeons as were the old Romans. The paramount importance of these considerations in explaining the immense amount of variation which pigeons have undergone, will be obvious when we treat of Selection. We shall then, also, see how it is that the breeds so often have a somewhat monstrous character. It is also a most favourable circumstance for the production of distinct breeds, that male and female pigeons can be easily mated for life; and thus different breeds can be kept together in the same aviary.I have discussed the probable origin of domestic pigeons at some, yet quite insufficient, length; because when I first kept pigeons and watched the several kinds, knowing well how true they bred, I felt fully as much difficulty in believing that they could ever have descended from a common parent, as any naturalist could in coming to a similar conclusion in regard to the many species of finches, or other large groups of birds, in nature. One circumstance has struck me much; namely, that all the breeders of the various domestic animals and the cultivators of plants, with whom I have ever conversed, or whose treatises I have read, are firmly convinced that the several breeds to which each has attended, are descended from so many aboriginally distinct species. Ask, as I have asked, a celebrated raiser of Hereford cattle, whether his cattle might not have descended from long horns, and he will laugh you to scorn. I have never met a pigeon, or poultry, or duck, or rabbit fancier, who was not fully convinced that each main breed was descended from a distinct species. Van Mons, in his treatise on pears and apples, shows how utterly he disbelieves that the several sorts, for instance a Ribston-pippin or Codlin-apple, could ever have proceeded from the seeds of the same tree. Innumerable other examples could be given. The explanation, I think, is simple: from long-continued study they are strongly impressed with the differences between the several races; and though they well know that each race varies slightly, for they win their prizes by selecting such slight differences, yet they ignore all general arguments, and refuse to sum up in their minds slight differences accumulated during many successive generations. May not those naturalists who, knowing far less of the laws of inheritance than does the breeder, and knowing no more than he does of the intermediate links in the long lines of descent, yet admit that many of our domestic races have descended from the same parents may they not learn a lesson of caution, when they deride the idea of species in a state of nature being lineal descendants of other species?Selection

计划指导

1.  These difficulties and objections may be classed under the following heads:-Firstly, why, if species have descended from other species by insensibly fine gradations, do we not everywhere see innumerable transitional forms? Why is not all nature in confusion instead of the species being, as we see them, well defined?
2.  On the belief that this is a law of nature, we can, I think, understand several large classes of facts, such as the following, which on any other view are inexplicable. Every hybridizer knows how unfavourable exposure to wet is to the fertilisation of a flower, yet what a multitude of flowers have their anthers and stigmas fully exposed to the weather! but if an occasional cross be indispensable, the fullest freedom for the entrance of pollen from another individual will explain this state of exposure, more especially as the plant's own anthers and pistil generally stand so close together that self-fertilisation seems almost inevitable. Many flowers, on the other hand, have their organs of fructification closely enclosed, as in the great papilionaceous or pea-family; but in several, perhaps in all, such flowers, there is a very curious adaptation between the structure of the flower and the manner in which bees suck the nectar; for, in doing this, they either push the flower's own pollen on the stigma, or bring pollen from another flower. So necessary are the visits of bees to papilionaceous flowers, that I have found, by experiments published elsewhere, that their fertility is greatly diminished if these visits be prevented. Now, it is scarcely possible that bees should fly from flower to flower, and not carry pollen from one to the other, to the great good, as I believe, of the plant. Bees will act like a camel-hair pencil, and it is quite sufficient just to touch the anthers of one flower and then the stigma of another with the same brush to ensure fertilisation; but it must not be supposed that bees would thus produce a multitude of hybrids between distinct species; for if you bring on the same brush a plant's own pollen and pollen from another species, the former will have such a prepotent effect, that it will invariably and completely destroy, as has been shown by G?rtner, any influence from the foreign pollen.When the stamens of a flower suddenly spring towards the pistil, or slowly move one after the other towards it, the contrivance seems adapted solely to ensure self-fertilisation; and no doubt it is useful for this end: but, the agency of insects is often required to cause the stamens to spring forward, as K?lreuter has shown to be the case with the barberry; and curiously in this very genus, which seems to have a special contrivance for self-fertilisation, it is well known that if very closely-allied forms or varieties are planted near each other, it is hardly possible to raise pure seedlings, so largely do they naturally cross. In many other cases, far from there being any aids for self-fertilisation, there are special contrivances, as I could show from the writings of C. C. Sprengel and from my own observations, which effectually prevent the stigma receiving pollen from its own flower: for instance, in Lobelia fulgens, there is a really beautiful and elaborate contrivance by which every one of the infinitely numerous pollen-granules are swept out of the conjoined anthers of each flower, before the stigma of that individual flower is ready to receive them; and as this flower is never visited, at least in my garden, by insects, it never sets a seed, though by placing pollen from one flower on the stigma of another, I raised plenty of seedlings; and whilst another species of Lobelia growing close by, which is visited by bees, seeds freely. In very many other cases, though there be no special mechanical contrivance to prevent the stigma of a flower receiving its own pollen, yet, as C. C. Sprengel has shown, and as I can confirm, either the anthers burst before the stigma is ready for fertilisation, or the stigma is ready before the pollen of that flower is ready, so that these plants have in fact separated sexes, and must habitually be crossed. How strange are these facts! How strange that the pollen and stigmatic surface of the same flower, though placed so close together, as if for the very purpose of self-fertilisation, should in so many cases be mutually useless to each other! How simply are these facts explained on the view of an occasional cross with a distinct individual being advantageous or indispensable!If several varieties of the cabbage, radish, onion, and of some other plants, be allowed to seed near each other, a large majority, as I have found, of the seedlings thus raised will turn out mongrels: for instance, I raised 233 seedling cabbages from some plants of different varieties growing near each other, and of these only 78 were true to their kind, and some even of these were not perfectly true. Yet the pistil of each cabbage-flower is surrounded not only by its own six stamens, but by those of the many other flowers on the same plant. How, then, comes it that such a vast number of the seedlings are mongrelised? I suspect that it must arise from the pollen of a distinct variety having a prepotent effect over a flower's own pollen; and that this is part of the general law of good being derived from the intercrossing of distinct individuals of the same species. When distinct species are crossed the case is directly the reverse, for a plant's own pollen is always prepotent over foreign pollen; but to this subject we shall return in a future chapter.
3.  Our ignorance of the laws of variation is profound. Not in one case out of a hundred can we pretend to assign any reason why this or that part differs, more or less, from the same part in the parents. But whenever we have the means of instituting a comparison, the same laws appear to have acted in producing the lesser differences between varieties of the same species, and the greater differences between species of the same genus. The external conditions of life, as climate and food, &c., seem to have induced some slight modifications. Habit in producing constitutional differences, and use in strengthening, and disuse in weakening and diminishing organs, seem to have been more potent in their effects. Homologous parts tend to vary in the same way, and homologous parts tend to cohere. Modifications in hard parts and in external parts sometimes affect softer and internal parts. When one part is largely developed, perhaps it tends to draw nourishment from the adjoining parts; and every part of the structure which can be saved without detriment to the individual, will be saved. Changes of structure at an early age will generally affect parts subsequently developed; and there are very many other correlations of growth, the nature of which we are utterly unable to understand. Multiple parts are variable in number and in structure, perhaps arising from such parts not having been closely specialized to any particular function, so that their modifications have not been closely checked by natural selection. It is probably from this same cause that organic beings low in the scale of nature are more variable than those which have their whole organisation more specialized, and are higher in the scale. Rudimentary organs, from being useless, will be disregarded by natural selection, and hence probably are variable. Specific characters that is, the characters which have come to differ since the several species of the same genus branched off from a common parent are more variable than generic characters, or those which have long been inherited, and have not differed within this same period. In these remarks we have referred to special parts or organs being still variable, because they have recently varied and thus come to differ; but we have also seen in the second Chapter that the same principle applies to the whole individual; for in a district where many species of any genus are found that is, where there has been much former variation and differentiation, or where the manufactory of new specific forms has been actively at work there, on an average, we now find most varieties or incipient species. Secondary sexual characters are highly variable, and such characters differ much in the species of the same group. Variability in the same parts of the organisation has generally been taken advantage of in giving secondary sexual differences to the sexes of the same species, and specific differences to the several species of the same genus. Any part or organ developed to an extraordinary size or in an extraordinary manner, in comparison with the same part or organ in the allied species, must have gone through an extraordinary amount of modification since the genus arose; and thus we can understand why it should often still be variable in a much higher degree than other parts; for variation is a long-continued and slow process, and natural selection will in such cases not as yet have had time to overcome the tendency to further variability and to reversion to a less modified state. But when a species with any extraordinarily-developed organ has become the parent of many modified descendants which on my view must be a very slow process, requiring a long lapse of time in this case, natural selection may readily have succeeded in giving a fixed character to the organ, in however extraordinary a manner it may be developed. Species inheriting nearly the same constitution from a common parent and exposed to similar influences will naturally tend to present analogous variations, and these same species may occasionally revert to some of the characters of their ancient progenitors. Although new and important modifications may not arise from reversion and analogous variation, such modifications will add to the beautiful and harmonious diversity of nature.Whatever the cause may be of each slight difference in the offspring from their parents and a cause for each must exist it is the steady accumulation, through natural selection, of such differences, when beneficial to the individual, that gives rise to all the more important modifications of structure, by which the innumerable beings on the face of this earth are enabled to struggle with each other, and the best adapted to survive.
4.  There are many laws regulating variation, some few of which can be dimly seen, and will be hereafter briefly mentioned. I will here only allude to what may be called correlation of growth. Any change in the embryo or larva will almost certainly entail changes in the mature animal. In monstrosities, the correlations between quite distinct parts are very curious; and many instances are given in Isidore Geoffroy St Hilaire's great work on this subject. Breeders believe that long limbs are almost always accompanied by an elongated head. Some instances of correlation are quite whimsical; thus cats with blue eyes are invariably deaf; colour and constitutional peculiarities go together, of which many remarkable cases could be given amongst animals and plants. From the facts collected by Heusinger, it appears that white sheep and pigs are differently affected from coloured individuals by certain vegetable poisons. Hairless dogs have imperfect teeth; long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large feet. Hence, if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously modify other parts of the structure, owing to the mysterious laws of the correlation of growth.The result of the various, quite unknown, or dimly seen laws of variation is infinitely complex and diversified. It is well worth while carefully to study the several treatises published on some of our old cultivated plants, as on the hyacinth, potato, even the dahlia, &c.; and it is really surprising to note the endless points in structure and constitution in which the varieties and sub varieties differ slightly from each other. The whole organization seems to have become plastic, and tends to depart in some small degree from that of the parental type.
5.  Although I do not doubt that isolation is of considerable importance in the production of new species, on the whole I am inclined to believe that largeness of area is of more importance, more especially in the production of species, which will prove capable of enduring for a long period, and of spreading widely. Throughout a great and open area, not only will there be a better chance of favourable variations arising from the large number of individuals of the same species there supported, but the conditions of life are infinitely complex from the large number of already existing species; and if some of these many species become modified and improved, others will have to be improved in a corresponding degree or they will be exterminated. Each new form, also, as soon as it has been much improved, will be able to spread over the open and continuous area, and will thus come into competition with many others. Hence more new places will be formed, and the competition to fill them will be more severe, on a large than on a small and isolated area. Moreover, great areas, though now continuous, owing to oscillations of level, will often have recently existed in a broken condition, so that the good effects of isolation will generally, to a certain extent, have concurred. Finally, I conclude that, although small isolated areas probably have been in some respects highly favourable for the production of new species, yet that the course of modification will generally have been more rapid on large areas; and what is more important, that the new forms produced on large areas, which already have been victorious over many competitors, will be those that will spread most widely, will give rise to most new varieties and species, and will thus play an important part in the changing history of the organic world.We can, perhaps, on these views, understand some facts which will be again alluded to in our chapter on geographical distribution; for instance, that the productions of the smaller continent of Australia have formerly yielded, and apparently are now yielding, before those of the larger Europaeo-Asiatic area. Thus, also, it is that continental productions have everywhere become so largely naturalised on islands. On a small island, the race for life will have been less severe, and there will have been less modification and less extermination. Hence, perhaps, it comes that the flora of Madeira, according to Oswald Heer, resembles the extinct tertiary flora of Europe. All fresh-water basins, taken together, make a small area compared with that of the sea or of the land; and, consequently, the competition between fresh-water productions will have been less severe than elsewhere; new forms will have been more slowly formed, and old forms more slowly exterminated. And it is in fresh water that we find seven genera of Ganoid fishes, remnants of a once preponderant order: and in fresh water we find some of the most anomalous forms now known in the world, as the Ornithorhynchus and Lepidosiren, which, like fossils, connect to a certain extent orders now widely separated in the natural scale. These anomalous forms may almost be called living fossils; they have endured to the present day, from having inhabited a confined area, and from having thus been exposed to less severe competition.To sum up the circumstances favourable and unfavourable to natural selection, as far as the extreme intricacy of the subject permits. I conclude, looking to the future, that for terrestrial productions a large continental area, which will probably undergo many oscillations of level, and which consequently will exist for long periods in a broken condition, will be the most favourable for the production of many new forms of life, likely to endure long and to spread widely. For the area will first have existed as a continent, and the inhabitants, at this period numerous in individuals and kinds, will have been subjected to very severe competition. When converted by subsidence into large separate islands, there will still exist many individuals of the same species on each island: intercrossing on the confines of the range of each species will thus be checked: after physical changes of any kind, immigration will be prevented, so that new places in the polity of each island will have to be filled up by modifications of the old inhabitants; and time will be allowed for the varieties in each to become well modified and perfected. When, by renewed elevation, the islands shall be re-converted into a continental area, there will again be severe competition: the most favoured or improved varieties will be enabled to spread: there will be much extinction of the less improved forms, and the relative proportional numbers of the various inhabitants of the renewed continent will again be changed; and again there will be a fair field for natural selection to improve still further the inhabitants, and thus produce new species.That natural selection will always act with extreme slowness, I fully admit. Its action depends on there being places in the polity of nature, which can be better occupied by some of the inhabitants of the country undergoing modification of some kind. The existence of such places will often depend on physical changes, which are generally very slow, and on the immigration of better adapted forms having been checked. But the action of natural selection will probably still oftener depend on some of the inhabitants becoming slowly modified; the mutual relations of many of the other inhabitants being thus disturbed. Nothing can be effected, unless favourable variations occur, and variation itself is apparently always a very slow process. The process will often be greatly retarded by free intercrossing. Many will exclaim that these several causes are amply sufficient wholly to stop the action of natural selection. I do not believe so. On the other hand, I do believe that natural selection will always act very slowly, often only at long intervals of time, and generally on only a very few of the inhabitants of the same region at the same time. I further believe, that this very slow, intermittent action of natural selection accords perfectly well with what geology tells us of the rate and manner at which the inhabitants of this world have changed.Slow though the process of selection may be, if feeble man can do much by his powers of artificial selection, I can see no limit to the amount of change, to the beauty and infinite complexity of the coadaptations between all organic beings, one with another and with their physical conditions of life, which may be effected in the long course of time by nature's power of selection.
6.  Alph. De Candolle and others have shown that plants which have very wide ranges generally present varieties; and this might have been expected, as they become exposed to diverse physical conditions, and as they come into competition (which, as we shall hereafter see, is a far more important circumstance) with different sets of organic beings. But my tables further show that, in any limited country, the species which are most common, that is abound most in individuals, and the species which are most widely diffused within their own country (and this is a different consideration from wide range, and to a certain extent from commonness), often give rise to varieties sufficiently well-marked to have been recorded in botanical works. Hence it is the most flourishing, or, as they may be called, the dominant species, those which range widely over the world, are the most diffused in their own country, and are the most numerous in individuals, which oftenest produce well-marked varieties, or, as I consider them, incipient species. And this, perhaps, might have been anticipated; for, as varieties, in order to become in any degree permanent, necessarily have to struggle with the other inhabitants of the country, the species which are already dominant will be the most likely to yield offspring which, though in some slight degree modified, will still inherit those advantages that enabled their parents to become dominant over their compatriots.If the plants inhabiting a country and described in any Flora be divided into two equal masses, all those in the larger genera being placed on one side, and all those in the smaller genera on the other side, a somewhat larger number of the very common and much diffused or dominant species will be found on the side of the larger genera. This, again, might have been anticipated; for the mere fact of many species of the same genus inhabiting any country, shows that there is something in the organic or inorganic conditions of that country favourable to the genus; and, consequently, we might have expected to have found in the larger genera, or those including many species, a large proportional number of dominant species. But so many causes tend to obscure this result, that I am surprised that my tables show even a small majority on the side of the larger genera. I will here allude to only two causes of obscurity. Fresh-water and salt-loving plants have generally very wide ranges and are much diffused, but this seems to be connected with the nature of the stations inhabited by them, and has little or no relation to the size of the genera to which the species belong. Again, plants low in the scale of organisation are generally much more widely diffused than plants higher in the scale; and here again there is no close relation to the size of the genera. The cause of lowly-organised plants ranging widely will be discussed in our chapter on geographical distribution.From looking at species as only strongly-marked and well-defined varieties, I was led to anticipate that the species of the larger genera in each country would oftener present varieties, than the species of the smaller genera; for wherever many closely related species (i.e. species of the same genus) have been formed, many varieties or incipient species ought, as a general rule, to be now forming. Where many large trees grow, we expect to find saplings. Where many species of a genus have been formed through variation, circumstances have been favourable for variation; and hence we might expect that the circumstances would generally be still favourable to variation. On the other hand, if we look at each species as a special act of creation, there is no apparent reason why more varieties should occur in a group having many species, than in one having few.

推荐功能

1.  On the Intercrossing of Individuals
2.  I think these views further explain what has sometimes been noticed namely that we know nothing about the origin or history of any of our domestic breeds. But, in fact, a breed, like a dialect of a language, can hardly be said to have had a definite origin. A man preserves and breeds from an individual with some slight deviation of structure, or takes more care than usual in matching his best animals and thus improves them, and the improved individuals slowly spread in the immediate neighbourhood. But as yet they will hardly have a distinct name, and from being only slightly valued, their history will be disregarded. When further improved by the same slow and gradual process, they will spread more widely, and will get recognised as something distinct and valuable, and will then probably first receive a provincial name. In semi-civilised countries, with little free communication, the spreading and knowledge of any new sub-breed will be a slow process. As soon as the points of value of the new sub-breed are once fully acknowledged, the principle, as I have called it, of unconscious selection will always tend, perhaps more at one period than at another, as the breed rises or falls in fashion, perhaps more in one district than in another, according to the state of civilisation of the inhabitants slowly to add to the characteristic features of the breed, whatever they may be. But the chance will be infinitely small of any record having been preserved of such slow, varying, and insensible changes.I must now say a few words on the circumstances, favourable, or the reverse, to man's power of selection. A high degree of variability is obviously favourable, as freely giving the materials for selection to work on; not that mere individual differences are not amply sufficient, with extreme care, to allow of the accumulation of a large amount of modification in almost any desired direction. But as variations manifestly useful or pleasing to man appear only occasionally, the chance of their appearance will be much increased by a large number of individuals being kept; and hence this comes to be of the highest importance to success. On this principle Marshall has remarked, with respect to the sheep of parts of Yorkshire, that 'as they generally belong to poor people, and are mostly in small lots, they never can be improved.' On the other hand, nurserymen, from raising large stocks of the same plants, are generally far more successful than amateurs in getting new and valuable varieties. The keeping of a large number of individuals of a species in any country requires that the species should be placed under favourable conditions of life, so as to breed freely in that country. When the individuals of any species are scanty, all the individuals, whatever their quality may be, will generally be allowed to breed, and this will effectually prevent selection. But probably the most important point of all, is, that the animal or plant should be so highly useful to man, or so much valued by him, that the closest attention should be paid to even the slightest deviation in the qualities or structure of each individual. Unless such attention be paid nothing can be effected. I have seen it gravely remarked, that it was most fortunate that the strawberry began to vary just when gardeners began to attend closely to this plant. No doubt the strawberry had always varied since it was cultivated, but the slight varieties had been neglected. As soon, however, as gardeners picked out individual plants with slightly larger, earlier, or better fruit, and raised seedlings from them, and again picked out the best seedlings and bred from them, then, there appeared (aided by some crossing with distinct species) those many admirable varieties of the strawberry which have been raised during the last thirty or forty years.In the case of animals with separate sexes, facility in preventing crosses is an important element of success in the formation of new races, at least, in a country which is already stocked with other races. In this respect enclosure of the land plays a part. Wandering savages or the inhabitants of open plains rarely possess more than one breed of the same species. Pigeons can be mated for life, and this is a great convenience to the fancier, for thus many races may be kept true, though mingled in the same aviary; and this circumstance must have largely favoured the improvement and formation of new breeds. Pigeons, I may add, can be propagated in great numbers and at a very quick rate, and inferior birds may be freely rejected, as when killed they serve for food. On the other hand, cats, from their nocturnal rambling habits, cannot be matched, and, although so much valued by women and children, we hardly ever see a distinct breed kept up; such breeds as we do sometimes see are almost always imported from some other country, often from islands. Although I do not doubt that some domestic animals vary less than others, yet the rarity or absence of distinct breeds of the cat, the donkey, peacock, goose, &c., may be attributed in main part to selection not having been brought into play: in cats, from the difficulty in pairing them; in donkeys, from only a few being kept by poor people, and little attention paid to their breeding; in peacocks, from not being very easily reared and a large stock not kept; in geese, from being valuable only for two purposes, food and feathers, and more especially from no pleasure having been felt in the display of distinct breeds.To sum up on the origin of our Domestic Races of animals and plants. I believe that the conditions of life, from their action on the reproductive system, are so far of the highest importance as causing variability. I do not believe that variability is an inherent and necessary contingency, under all circumstances, with all organic beings, as some authors have thought. The effects of variability are modified by various degrees of inheritance and of reversion. Variability is governed by many unknown laws, more especially by that of correlation of growth. Something may be attributed to the direct action of the conditions of life. Something must be attributed to use and disuse. The final result is thus rendered infinitely complex. In some cases, I do not doubt that the intercrossing of species, aboriginally distinct, has played an important part in the origin of our domestic productions. When in any country several domestic breeds have once been established, their occasional intercrossing, with the aid of selection, has, no doubt, largely aided in the formation of new sub-breeds; but the importance of the crossing of varieties has, I believe, been greatly exaggerated, both in regard to animals and to those plants which are propagated by seed. In plants which are temporarily propagated by cuttings, buds, &c., the importance of the crossing both of distinct species and of varieties is immense; for the cultivator here quite disregards the extreme variability both of hybrids and mongrels, and the frequent sterility of hybrids; but the cases of plants not propagated by seed are of little importance to us, for their endurance is only temporary. Over all these causes of Change I am convinced that the accumulative action of Selection, whether applied methodically and more quickly, or unconsciously and more slowly, but more efficiently, is by far the predominant power.
3.  The accompanying diagram will aid us in understanding this rather perplexing subject. Let A to L represent the species of a genus large in its own country; these species are supposed to resemble each other in unequal degrees, as is so generally the case in nature, and as is represented in the diagram by the letters standing at unequal distances. I have said a large genus, because we have seen in the second chapter, that on an average more of the species of large genera vary than of small genera; and the varying species of the large genera present a greater number of varieties. We have, also, seen that the species, which are the commonest and the most widely-diffused, vary more than rare species with restricted ranges. Let (A) be a common, widely-diffused, and varying species, belonging to a genus large in its own country. The little fan of diverging dotted lines of unequal lengths proceeding from (A), may represent its varying offspring. The variations are supposed to be extremely slight, but of the most diversified nature; they are not supposed all to appear simultaneously, but often after long intervals of time; nor are they all supposed to endure for equal periods. Only those variations which are in some way profitable will be preserved or naturally selected. And here the importance of the principle of benefit being derived from divergence of character comes in; for this will generally lead to the most different or divergent variations (represented by the outer dotted lines) being preserved and accumulated by natural selection. When a dotted line reaches one of the horizontal lines, and is there marked by a small numbered letter, a sufficient amount of variation is supposed to have been accumulated to have formed a fairly well-marked variety, such as would be thought worthy of record in a systematic work.The intervals between the horizontal lines in the diagram, may represent each a thousand generations; but it would have been better if each had represented ten thousand generations. After a thousand generations, species (A) is supposed to have produced two fairly well-marked varieties, namely a1 and m1. These two varieties will generally continue to be exposed to the same conditions which made their parents variable, and the tendency to variability is in itself hereditary, consequently they will tend to vary, and generally to vary in nearly the same manner as their parents varied. Moreover, these two varieties, being only slightly modified forms, will tend to inherit those advantages which made their common parent (A) more numerous than most of the other inhabitants of the same country; they will likewise partake of those more general advantages which made the genus to which the parent-species belonged, a large genus in its own country. And these circumstances we know to be favourable to the production of new varieties.
4.  Inasmuch as peculiarities often appear under domestication in one sex and become hereditarily attached to that sex, the same fact probably occurs under nature, and if so, natural selection will be able to modify one sex in its functional relations to the other sex, or in relation to wholly different habits of life in the two sexes, as is sometimes the case with insects. And this leads me to say a few words on what I call Sexual Selection. This depends, not on a struggle for existence, but on a struggle between the males for possession of the females; the result is not death to the unsuccessful competitor, but few or no offspring. Sexual selection is, therefore, less rigorous than natural selection. Generally, the most vigorous males, those which are best fitted for their places in nature, will leave most progeny. But in many cases, victory will depend not on general vigour, but on having special weapons, confined to the male sex. A hornless stag or spurless cock would have a poor chance of leaving offspring. Sexual selection by always allowing the victor to breed might surely give indomitable courage, length to the spur, and strength to the wing to strike in the spurred leg, as well as the brutal cock-fighter, who knows well that he can improve his breed by careful selection of the best cocks. How low in the scale of nature this law of battle descends, I know not; male alligators have been described as fighting, bellowing, and whirling round, like Indians in a war-dance, for the possession of the females; male salmons have been seen fighting all day long; male stag-beetles often bear wounds from the huge mandibles of other males. The war is, perhaps, severest between the males of polygamous animals, and these seem oftenest provided with special weapons. The males of carnivorous animals are already well armed; though to them and to others, special means of defence may be given through means of sexual selection, as the mane to the lion, the shoulder-pad to the boar, and the hooked jaw to the male salmon; for the shield may be as important for victory, as the sword or spear.Amongst birds, the contest is often of a more peaceful character. All those who have attended to the subject, believe that there is the severest rivalry between the males of many species to attract by singing the females. The rock-thrush of Guiana, birds of paradise, and some others, congregate; and successive males display their gorgeous plumage and perform strange antics before the females, which standing by as spectators, at last choose the most attractive partner. Those who have closely attended to birds in confinement well know that they often take individual preferences and dislikes: thus Sir R. Heron has described how one pied peacock was eminently attractive to all his hen birds. It may appear childish to attribute any effect to such apparently weak means: I cannot here enter on the details necessary to support this view; but if man can in a short time give elegant carriage and beauty to his bantams, according to his standard of beauty, I can see no good reason to doubt that female birds, by selecting, during thousands of generations, the most melodious or beautiful males, according to their standard of beauty, might produce a marked effect. I strongly suspect that some well-known laws with respect to the plumage of male and female birds, in comparison with the plumage of the young, can be explained on the view of plumage having been chiefly modified by sexual selection, acting when the birds have come to the breeding age or during the breeding season; the modifications thus produced being inherited at corresponding ages or seasons, either by the males alone, or by the males and females; but I have not space here to enter on this subject.Thus it is, as I believe, that when the males and females of any animal have the same general habits of life, but differ in structure, colour, or ornament, such differences have been mainly caused by sexual selection; that is, individual males have had, in successive generations, some slight advantage over other males, in their weapons, means of defence, or charms; and have transmitted these advantages to their male offspring. Yet, I would not wish to attribute all such sexual differences to this agency: for we see peculiarities arising and becoming attached to the male sex in our domestic animals (as the wattle in male carriers, horn-like protuberances in the cocks of certain fowls, &c.), which we cannot believe to be either useful to the males in battle, or attractive to the females. We see analogous cases under nature, for instance, the tuft of hair on the breast of the turkey-cock, which can hardly be either useful or ornamental to this bird; indeed, had the tuft appeared under domestication, it would have been called a monstrosity.
5.   --------------------------------------------------------------------------------
6.  --------------------------------------------------------------------------------

应用

1.  Previous Chapter
2.  Extinction
3.  Guided by theoretical considerations, I thought that some interesting results might be obtained in regard to the nature and relations of the species which vary most, by tabulating all the varieties in several well-worked floras. At first this seemed a simple task; but Mr H. C. Watson, to whom I am much indebted for valuable advice and assistance on this subject, soon convinced me that there were many difficulties, as did subsequently Dr Hooker, even in stronger terms. I shall reserve for my future work the discussion of these difficulties, and the tables themselves of the proportional numbers of the varying species. Dr Hooker permits me to add, that after having carefully read my manuscript, and examined the tables, he thinks that the following statements are fairly well established. The whole subject, however, treated as it necessarily here is with much brevity, is rather perplexing, and allusions cannot be avoided to the 'struggle for existence,' 'divergence of character,' and other questions, hereafter to be discussed.
4、  In plants the same gradual process of improvement, through the occasional preservation of the best individuals, whether or not sufficiently distinct to be ranked at their first appearance as distinct varieties, and whether or not two or more species or races have become blended together by crossing, may plainly be recognised in the increased size and beauty which we now see in the varieties of the heartsease, rose, pelargonium, dahlia, and other plants, when compared with the older varieties or with their parent-stocks. No one would ever expect to get a first-rate heartsease or dahlia from the seed of a wild plant. No one would expect to raise a first-rate melting pear from the seed of a wild pear, though he might succeed from a poor seedling growing wild, if it had come from a garden-stock. The pear, though cultivated in classical times, appears, from Pliny's description, to have been a fruit of very inferior quality. I have seen great surprise expressed in horticultural works at the wonderful skill of gardeners, in having produced such splendid results from such poor materials; but the art, I cannot doubt, has been simple, and, as far as the final result is concerned, has been followed almost unconsciously. It has consisted in always cultivating the best known variety, sowing its seeds, and, when a slightly better variety has chanced to appear, selecting it, and so onwards. But the gardeners of the classical period, who cultivated the best pear they could procure, never thought what splendid fruit we should eat; though we owe our excellent fruit, in some small degree, to their having naturally chosen and preserved the best varieties they could anywhere find.A large amount of change in our cultivated plants, thus slowly and unconsciously accumulated, explains, as I believe, the well-known fact, that in a vast number of cases we cannot recognise, and therefore do not know, the wild parent-stocks of the plants which have been longest cultivated in our flower and kitchen gardens. If it has taken centuries or thousands of years to improve or modify most of our plants up to their present standard of usefulness to man, we can understand how it is that neither Australia, the Cape of Good Hope, nor any other region inhabited by quite uncivilised man, has afforded us a single plant worth culture. It is not that these countries, so rich in species, do not by a strange chance possess the aboriginal stocks of any useful plants, but that the native plants have not been improved by continued selection up to a standard of perfection comparable with that given to the plants in countries anciently civilised.
5、  Chapter 2 - Variation Under Nature

旧版特色

!

网友评论(hqH1JlnM33106))

  • 张建林 08-08

      Alph. De Candolle and others have shown that plants which have very wide ranges generally present varieties; and this might have been expected, as they become exposed to diverse physical conditions, and as they come into competition (which, as we shall hereafter see, is a far more important circumstance) with different sets of organic beings. But my tables further show that, in any limited country, the species which are most common, that is abound most in individuals, and the species which are most widely diffused within their own country (and this is a different consideration from wide range, and to a certain extent from commonness), often give rise to varieties sufficiently well-marked to have been recorded in botanical works. Hence it is the most flourishing, or, as they may be called, the dominant species, those which range widely over the world, are the most diffused in their own country, and are the most numerous in individuals, which oftenest produce well-marked varieties, or, as I consider them, incipient species. And this, perhaps, might have been anticipated; for, as varieties, in order to become in any degree permanent, necessarily have to struggle with the other inhabitants of the country, the species which are already dominant will be the most likely to yield offspring which, though in some slight degree modified, will still inherit those advantages that enabled their parents to become dominant over their compatriots.If the plants inhabiting a country and described in any Flora be divided into two equal masses, all those in the larger genera being placed on one side, and all those in the smaller genera on the other side, a somewhat larger number of the very common and much diffused or dominant species will be found on the side of the larger genera. This, again, might have been anticipated; for the mere fact of many species of the same genus inhabiting any country, shows that there is something in the organic or inorganic conditions of that country favourable to the genus; and, consequently, we might have expected to have found in the larger genera, or those including many species, a large proportional number of dominant species. But so many causes tend to obscure this result, that I am surprised that my tables show even a small majority on the side of the larger genera. I will here allude to only two causes of obscurity. Fresh-water and salt-loving plants have generally very wide ranges and are much diffused, but this seems to be connected with the nature of the stations inhabited by them, and has little or no relation to the size of the genera to which the species belong. Again, plants low in the scale of organisation are generally much more widely diffused than plants higher in the scale; and here again there is no close relation to the size of the genera. The cause of lowly-organised plants ranging widely will be discussed in our chapter on geographical distribution.From looking at species as only strongly-marked and well-defined varieties, I was led to anticipate that the species of the larger genera in each country would oftener present varieties, than the species of the smaller genera; for wherever many closely related species (i.e. species of the same genus) have been formed, many varieties or incipient species ought, as a general rule, to be now forming. Where many large trees grow, we expect to find saplings. Where many species of a genus have been formed through variation, circumstances have been favourable for variation; and hence we might expect that the circumstances would generally be still favourable to variation. On the other hand, if we look at each species as a special act of creation, there is no apparent reason why more varieties should occur in a group having many species, than in one having few.

  • 刘瑞云 08-08

      The advantage of diversification in the inhabitants of the same region is, in fact, the same as that of the physiological division of labour in the organs of the same individual body a subject so well elucidated by Milne Edwards. No physiologist doubts that a stomach by being adapted to digest vegetable matter alone, or flesh alone, draws most nutriment from these substances. So in the general economy of any land, the more widely and perfectly the animals and plants are diversified for different habits of life, so will a greater number of individuals be capable of there supporting themselves. A set of animals, with their organisation but little diversified, could hardly compete with a set more perfectly diversified in structure. It may be doubted, for instance, whether the Australian marsupials, which are divided into groups differing but little from each other, and feebly representing, as Mr Waterhouse and others have remarked, our carnivorous, ruminant, and rodent mammals, could successfully compete with these well-pronounced orders. In the Australian mammals, we see the process of diversification in an early and incomplete stage of development.After the foregoing discussion, which ought to have been much amplified, we may, I think, assume that the modified descendants of any one species will succeed by so much the better as they become more diversified in structure, and are thus enabled to encroach on places occupied by other beings. Now let us see how this principle of great benefit being derived from divergence of character, combined with the principles of natural selection and of extinction, will tend to act.

  • 郑梓桢 08-08

       Chapter 3 - Struggle for Existence

  • 安监 08-08

      I must here introduce a short digression. In the case of animals and plants with separated sexes, it is of course obvious that two individuals must always unite for each birth; but in the case of hermaphrodites this is far from obvious. Nevertheless I am strongly inclined to believe that with all hermaphrodites two individuals, either occasionally or habitually, concur for the reproduction of their kind. This view, I may add, was first suggested by Andrew Knight. We shall presently see its importance; but I must here treat the subject with extreme brevity, though I have the materials prepared for an ample discussion. All vertebrate animals, all insects, and some other large groups of animals, pair for each birth. Modern research has much diminished the number of supposed hermaphrodites, and of real hermaphrodites a large number pair; that is, two individuals regularly unite for reproduction, which is all that concerns us. But still there are many hermaphrodite animals which certainly do not habitually pair, and a vast majority of plants are hermaphrodites. What reason, it may be asked, is there for supposing in these cases that two individuals ever concur in reproduction? As it is impossible here to enter on details, I must trust to some general considerations alone.In the first place, I have collected so large a body of facts, showing, in accordance with the almost universal belief of breeders, that with animals and plants a cross between different varieties, or between individuals of the same variety but of another strain, gives vigour and fertility to the offspring; and on the other hand, that close interbreeding diminishes vigour and fertility; that these facts alone incline me to believe that it is a general law of nature (utterly ignorant though we be of the meaning of the law) that no organic being self-fertilises itself for an eternity of generations; but that a cross with another individual is occasionally perhaps at very long intervals -- indispensable.

  • 牛鹏飞 08-07

    {  When a variation is of the slightest use to a being, we cannot tell how much of it to attribute to the accumulative action of natural selection, and how much to the conditions of life. Thus, it is well known to furriers that animals of the same species have thicker and better fur the more severe the climate is under which they have lived; but who can tell how much of this difference may be due to the warmest-clad individuals having been favoured and preserved during many generations, and how much to the direct action of the severe climate? for it would appear that climate has some direct action on the hair of our domestic quadrupeds.

  • 王德妃 08-06

      This subject will be more fully discussed in our chapter on Geology; but it must be here alluded to from being intimately connected with natural selection. Natural selection acts solely through the preservation of variations in some way advantageous, which consequently endure. But as from the high geometrical powers of increase of all organic beings, each area is already fully stocked with inhabitants, it follows that as each selected and favoured form increases in number, so will the less favoured forms decrease and become rare. Rarity, as geology tells us, is the precursor to extinction. We can, also, see that any form represented by few individuals will, during fluctuations in the seasons or in the number of its enemies, run a good chance of utter extinction. But we may go further than this; for as new forms are continually and slowly being produced, unless we believe that the number of specific forms goes on perpetually and almost indefinitely increasing, numbers inevitably must become extinct. That the number of specific forms has not indefinitely increased, geology shows us plainly; and indeed we can see reason why they should not have thus increased, for the number of places in the polity of nature is not indefinitely great, not that we have any means of knowing that any one region has as yet got its maximum of species. probably no region is as yet fully stocked, for at the Cape of Good Hope, where more species of plants are crowded together than in any other quarter of the world, some foreign plants have become naturalised, without causing, as far as we know, the extinction of any natives.Furthermore, the species which are most numerous in individuals will have the best chance of producing within any given period favourable variations. We have evidence of this, in the facts given in the second chapter, showing that it is the common species which afford the greatest number of recorded varieties, or incipient species. Hence, rare species will be less quickly modified or improved within any given period, and they will consequently be beaten in the race for life by the modified descendants of the commoner species.}

  • 安农 08-06

      I see no reason to limit the process of modification, as now explained, to the formation of genera alone. If, in our diagram, we suppose the amount of change represented by each successive group of diverging dotted lines to be very great, the forms marked a214 to p14, those marked b14 and f14, and those marked o14 to m14, will form three very distinct genera. We shall also have two very distinct genera descended from (I) and as these latter two genera, both from continued divergence of character and from inheritance from a different parent, will differ widely from the three genera descended from (A), the two little groups of genera will form two distinct families, or even orders, according to the amount of divergent modification supposed to be represented in the diagram. And the two new families, or orders, will have descended from two species of the original genus; and these two species are supposed to have descended from one species of a still more ancient and unknown genus.

  • 杨栋梁 08-06

      As we see that those variations which under domestication appear at any particular period of life, tend to reappear in the offspring at the same period; for instance, in the seeds of the many varieties of our culinary and agricultural plants; in the caterpillar and cocoon stages of the varieties of the silkworm; in the eggs of poultry, and in the colour of the down of their chickens; in the horns of our sheep and cattle when nearly adult; so in a state of nature, natural selection will be enabled to act on and modify organic beings at any age, by the accumulation of profitable variations at that age, and by their inheritance at a corresponding age. If it profit a plant to have its seeds more and more widely disseminated by the wind, I can see no greater difficulty in this being effected through natural selection, than in the cotton-planter increasing and improving by selection the down in the pods on his cotton-trees. Natural selection may modify and adapt the larva of an insect to a score of contingencies, wholly different from those which concern the mature insect. These modifications will no doubt affect, through the laws of correlation, the structure of the adult; and probably in the case of those insects which live only for a few hours, and which never feed, a large part of their structure is merely the correlated result of successive changes in the structure of their larvae. So, conversely, modifications in the adult will probably often affect the structure of the larva; but in all cases natural selection will ensure that modifications consequent on other modifications at a different period of life, shall not be in the least degree injurious: for if they became so, they would cause the extinction of the species.Natural selection will modify the structure of the young in relation to the parent, and of the parent in relation to the young. In social animals it will adapt the structure of each individual for the benefit of the community; if each in consequence profits by the selected change. What natural selection cannot do, is to modify the structure of one species, without giving it any advantage, for the good of another species; and though statements to this effect may be found in works of natural history, I cannot find one case which will bear investigation. A structure used only once in an animal's whole life, if of high importance to it, might be modified to any extent by natural selection; for instance, the great jaws possessed by certain insects, and used exclusively for opening the cocoon or the hard tip to the beak of nestling birds, used for breaking the egg. It has been asserted, that of the best short-beaked tumbler-pigeons more perish in the egg than are able to get out of it; so that fanciers assist in the act of hatching. Now, if nature had to make the beak of a full-grown pigeon very short for the bird's own advantage, the process of modification would be very slow, and there would be simultaneously the most rigorous selection of the young birds within the egg, which had the most powerful and hardest beaks, for all with weak beaks would inevitably perish: or, more delicate and more easily broken shells might be selected, the thickness of the shell being known to vary like every other structure.Sexual Selection

  • 叶晓萍 08-05

       Guided by theoretical considerations, I thought that some interesting results might be obtained in regard to the nature and relations of the species which vary most, by tabulating all the varieties in several well-worked floras. At first this seemed a simple task; but Mr H. C. Watson, to whom I am much indebted for valuable advice and assistance on this subject, soon convinced me that there were many difficulties, as did subsequently Dr Hooker, even in stronger terms. I shall reserve for my future work the discussion of these difficulties, and the tables themselves of the proportional numbers of the varying species. Dr Hooker permits me to add, that after having carefully read my manuscript, and examined the tables, he thinks that the following statements are fairly well established. The whole subject, however, treated as it necessarily here is with much brevity, is rather perplexing, and allusions cannot be avoided to the 'struggle for existence,' 'divergence of character,' and other questions, hereafter to be discussed.

  • 高嘉敏 08-03

    {  The Origin of Species

  • 袁心玲 08-03

      Climate plays an important part in determining the average numbers of a species, and periodical seasons of extreme cold or drought, I believe to be the most effective of all checks. I estimated that the winter of 1854-55 destroyed four-fifths of the birds in my own grounds; and this is a tremendous destruction, when we remember that ten per cent. is an extraordinarily severe mortality from epidemics with man. The action of climate seems at first sight to be quite independent of the struggle for existence; but in so far as climate chiefly acts in reducing food, it brings on the most severe struggle between the individuals, whether of the same or of distinct species, which subsist on the same kind of food. Even when climate, for instance extreme cold, acts directly, it will be the least vigorous, or those which have got least food through the advancing winter, which will suffer most. When we travel from south to north, or from a damp region to a dry, we invariably see some species gradually getting rarer and rarer, and finally disappearing; and the change of climate being conspicuous, we are tempted to attribute the whole effect to its direct action. But this is a very false view: we forget that each species, even where it most abounds, is constantly suffering enormous destruction at some period of its life, from enemies or from competitors for the same place and food; and if these enemies or competitors be in the least degree favoured by any slight change of climate, they will increase in numbers, and, as each area is already fully stocked with inhabitants, the other species will decrease. When we travel southward and see a species decreasing in numbers, we may feel sure that the cause lies quite as much in other species being favoured, as in this one being hurt. So it is when we travel northward, but in a somewhat lesser degree, for the number of species of all kinds, and therefore of competitors, decreases northwards; hence in going northward, or in ascending a mountain, we far oftener meet with stunted forms, due to the directly injurious action of climate, than we do in proceeding southwards or in descending a mountain. When we reach the Arctic regions, or snow-capped summits, or absolute deserts, the struggle for life is almost exclusively with the elements.That climate acts in main part indirectly by favouring other species, we may clearly see in the prodigious number of plants in our gardens which can perfectly well endure our climate, but which never become naturalised, for they cannot compete with our native plants, nor resist destruction by our native animals.

提交评论